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OPTIMAL DESIGN OF ELASTIC CIRCULAR SANDWICH BEAMS
FOR MINIMUM COMPLIANCE 1

N. C. Huang and C. Y. Sheu

Department of the Aerospace and Mechanical Engineering Sciences
University of California, San Diego

La Jolla, California

ABSTRACT

Elastic circular sandwich beams are designed for minimum

compliance and given total weight. To treat the problem in a more

t realistic manner, the beams are regarded as extensible. Examples

are given for the optimal design of circular rings and semicircular

arches with different end conditions. The calculated optimal com-

pliance is compared with the corresponding compliance of a uniform

beam with identical weight. Finally, the optimal design with stress

bounds is also investigated for the ring problem.

The results presented in this paper were obtained in the course of

research supported partly by the U. S. Army Research Office-
Durham under Research Grant DA-ARO-D-31-61008 and partly by
the Air Force Office of Scientific Research, Office of Aerospace
Research, U.S. Air Force Office under AFOSR Grant AF-AFOSR
1226-67 with University of California, San Diego.



1. INTRODUCTION

In the analysis of the deformation of the curved beams such as

rings and arches, we usually assume that the center line of the beam

is inextensible and the deflection of the beam is entirely due to flexure.

Such an assumption could simplify the analysis considerably and the

error introduced by the assumption is very small if the ratio of the

thickness of the beam to the radius of curvature of the center line of

the beam is much less than unity. However, in the optimal elastic

design of structures for given total weight and minimum compliance,

the design variable is proportional to the strain energy density [1] .

Therefore, the assumption of inextensibility would lead to a design

with zero cross sections at those locations of vanishing bending moment.

The fiber stress would become infinite there when the axial force does

not vanish. To remedy this deficiency one may stipulate a minimum

cross section constraint (2], or set bounds on the fiber stress, or re-

move the assumption of inextensibility.

The present paper illustrates how the last amendment is applied

to a realistic design. For simplicity, our investigation is restricted

to the design of sandwich beams for which the bending stiffness is re-

garded as proportional to the extensional stiffness.

a Numbers in brackets designate References at end of paper.
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2. BASIC EQUATIONS

Consider the in-plane infinitesimal deformation of a circniar,

curved beam with symmetrical cross sections. The thickness of the

beam is assumed to be much smaller than the radius R of the center

line of the beam. The stress-displacement relations of the curved

beam can be derived based on the Euler-Bernoulli assumption [3).

The stress-displacement relations thus obtained are too complicated

to be applied to practical problems unless further approximations or

linearizations are imposed. In the following, we shall postulate that

the fiber stress at any point in the beam with a distance z from the

central surface can be expressed as

Fr I + Mz (1)
A I

where F is the fiber stress resultant, M is the bending moment,

A is the cross-sectional area and I is the moment of inertia of the

cross- sectional area about the centroidal axis. In fact, Eq. (1) can

be derived based on Euler-Bernoulli assumption if terms of the order

of r/R are neglected as compared with unity where r is the radius

of gyration of the cross section of the beam. The stress energy per

unit length of the beam can be expressed by the following area

integral over the cross section:

u 2 'dA =+ . (9
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Let the inward normal distributed load be p (a), the counter-

clockwise tangential distributed load t (s), the inward normal displace-

ment w and the counterclockwise tangential displacement v. By con-

sidering the equilibrium in moment, radial and tangential forces acting

on an infinitesimal element of the beam as shown in Fig. 1, we obtain

the following equations of equilibrium:

F+ M + p = 0 , (3)
R

F' + t (4)
R

The stress displacement relations can be derived from the

principle of minimum complementary energy with Eqs. (3) and (4) as

constraint conditions while the displacements v and w are con-

sidered to be prescribed. We obtain

AE 1 (5)

S~M - ÷- *) (6)E1 R s

where the dot represents the differentiation with respect to the polar

angle 0. Note that () * .R( )'

Next, let us consider the optimal design of circular curved

beams. The beam is designed to minimize total compliance due to a

concentrated force of given magnitude while the total weight of the

beam is prescribed. The necessary and sufficient condition of local
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optimum is given in El). It is

U/B = constant (7)

where U is the strain (or stress) energy per unit length of the beam

given by Eq. (2) and B is the design variable. In the case of optimal

design of sandwich beams with given height of the core, we shall

choose the area of the cover sheets A as the design variable. In this

case, the stiffness per unit length of the beam is proportional to A

and Eq. (7) becomes the necessary and sufficient condition of global

optimum. The application of Eq. (7) to the optimal design of straight

sandwich beams is given in [4).

If we assume that the curved beam is inextensible, then the

first term in Eq. (2) is dropped. In this case, the design variable A

would vanish whenever the bending moment M vanishes. Note that

at any section with zero value of A, the fiber stress becomes infinity.

Thus the assumption of inextensiblity is no longer valid. In order to

treat our problem in a more realistic manner, we shall regard the

beam as extensible and use the expression of strain energy, Eq. (2).

We shall assume the cross-sectional areas of the top and

bottom cover sheets to be identical. The core is regarded as perfectly

soft and the whole fiber stress is carried by the cover sheets. Since

the thickness of both cover sheets is much smaller than the height of

the core T, the moment of inertia of the cover sheets can be expressed

approximately as

4
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I R2 RP.A (8)

where • = T/(2R) is a constant. The curved beam is said to be

slender if P << 1. From Eqs. (2), (7), (5), (6), and (8), the

optimality condition can be expressed in terms of displacement com-

ponents as

p3 ('(- )2 + (j + w)2 = c (9)

where c is a positive constant. Note that Eq. (9) is a nonlinear

differential equation of v and w.

3. OPTIMAL DESIGN OF CIRCULAR RINGS AND ARCHES

A circular elastic slender sandwich ring of radius R is de-

formed by two equal and opposite forces P as shown in Fig. Za. For

given total weight of the ring, we shall find the variation of thick-

ness of the cover sheets such that the deflections at a and b are

minimized. A similar problem of optimal design of plastic rings is

investigated by Prager [2].

Since the optimum ring is symmetrical with respect to the

diameters e = 0 and e = w/2, we need only consider one-quarter of

the ring in the first quadrant 0 6 S 7r/2. At 6 = 0, the axial

tension is P/2 and the transverse shear is zero. Note that the bend-

ing moment at 0 = 0 remains unknown and we shall denote it by M, .

At any section within 0 9 9 S w/Z, the bending moment and the axial

tension are respectively



PR7

M = M - ? (1-coso) (10)

F co 0 (11)
2

After elimination of M and F from Eqs. (5), (6), (10), and

(11), we obtain

-A(÷+ w) coo- PE cos O ,(12)

ZE
PR

A 2 E- - 2 (k- cos o) (13)

2M
where k = 1 - - is a constant to be determined. From Eqs. (9),

PR

(12), and (13), the design variable A can be expressed as

A = P1/2 [ (k - cog 9)2 + cos82  1 (14)

Since the total weight of the core is fixed, to prescribe the

total weight of the beam is equivalent to assigning the total weight of

the cover sheets. Let the density of the cover sheets be p. The total

weight of the cover sheets is
w/Z
W0 AdO = ZPpRE c-/2 f

W 4pR A8 E(5

where

1r/2 Co-1/2
f : [-J (k - cos 6)' + cos 2 ] d . (16)



Fror, Eqs. (14; -'nd (15) tL. cros--sectional area within 0 5 0 S w/2

can be written as

A= 4pRf [ (k- cos )1 + cos3 e . (17)

Since the value of k is found to be nonzero, the value of A would

never vanish.

In view of Eq. (17). the general solutions of Eqs. (12) and

(13) are found to be

w = c1 sine + c 3 Coss

2PpR2f'+ 2PRf k- (I +•)coso] [(k- Cos•p)s+p2aCOsa •]-'1/2sin(S-0 dp

and

v = c cosa - c sine + C3

ZPpR 2f
EW 2 k- cos•- Ek- (l+p2)coso]cos (9-t)l t(k - cos 0

+ p cos02] -1/2 do.

(19)

The integration constants c1 , c32 c3 and the value of k can be

determined by the boundary conditions

S(0) = v(0) - i(r/2) - v(w/2) = 0 (20)

It is found that

c0 , (21

7i "
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v/2Pp RE f Cog 9)2 + C02/2 d9C~ B ' sinG Ck'(l+ip2lcoo 9] lk'c- l+~~S •S

2 EPR J O

and the constant k satisfies the following equation:

, o'/2 -1/2

(k - cos 8) [(k - coso )2 + •2 cos 2 6) dO = 0 . (23)

Note that Eq. (23) can also be obtained directly by integrating Eq. (13)

and using Eqs. (17) and (20). After the value k is determined from

Eq. (23), f, and hence A (6), can be evaluated from Eqs. (16) and

(17) respectively. In Fig. 3, the ratio of A to its average value

is plotted against 6 in solid lines for P = 0.05, 0.1, and 0.15.

It is found that when P approaches zero the minimum cross-

sectional area also approaches zero and its limiting position is at

* T-*. This is not surprising because in this limiting case the first

term in the bracket of Eq. (14) becomes dominant and the design is

actually equivalent to that of an inextensible ring. One can easily

show that for the optimal design of inextensible rings, k = coso- (w/4)

and A (6) is proportional to I k - cos .• Accordingly, we conclude

that for a very small value of P, the optimal design of an inextensible

ring is a good approximate design except in the region near the min-

imum cross section. We shall discuss this point further.

To show the efficiency of the optimal design, the deflection

8



80 at the point of the application of the force P is compared with that

of a ring of uniform cross section and equal weight. For optimum

rings, we have

E W = ± '/2 ( - osd

PpR; 0 - 0 k-(l+ )cos] [(k-cos9)2 + P2cos0s2] cos OM.

(24)

For uniform rings, the deflection 6 can be obtained fromU

Castigliano's theorem as

-56 = W. -1 + (nS)TP [p(R U) E]8.7(25

These compliances and their ratio are plotted against • in Fig. 4.

It is found that the compliance is reduced by 18-25% between • 0.15

and 0.05 due to the optimum design.

In the foregoing discussion, we have considered the design of

the circular rings. The optimal design of other types of the circular

slender beams can also be analyzed in a similar manner. Let us con-

sider the optimal designs of semicircular arches deformed by a vertical

force P at the crown, as shown in Figs. 2b and 2c. For two hinged

arches, the bending moment and the axial tension can be expressed in

terms of the horizontal outward reaction H at e = 0. For clamped

arches, the bending moment andthe axial tension can be expressed in

terms of two redundant quantities M and H at the end of the arch.
1.



Using appropriate boundary conditions we can easily derive the follow-

ing governing equations for the optimal design of semicircular arches:

(a) Two hinged arches

A = TpR- (coso + h sin9 - 1) 2 + (coso + hsin8)2 (16)

2pRg 
1 0 26

W/2 2/2

1= 0 [ (coos9+ h sin6 )+ (cos0+ h sin O)a d8 , (2 7)

Wr/2

0 (l+P 2)(cos6 +hsine)- I] [(coso6+hsin9- l)2
+ P' (cos 6 + h sin6)2 ] singdO = 0,

(28)

EW6 g W/Z
f- = -" [(cos6+hsin- 1)(1- coso)PpR~ 0

- 0cos (cos9 + h sin))] U(cos8 + hsin6- 1)
2

- 1/2

+ P 2 (coso + h sin)) 2 ) dc , (29)

EWp d2 2

PpR =j, 2z A' (30)

(b) Clamped arches

A W= [W (cos 8 + h sin 8 + n)2 + (cos 6+ h sin e)21• 2 (31)A- pRg 2-

g W = -•(cose + h sinO + n)2+ (cose+ hsin)2 dO (32)
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1w/2

O C(l1+ P)(cose+hsin6) +n] [(cos6 + hsinO + n)s

+ Pa (cosn6 + h sin@)2 / sin OdO : 0,

(33)

(cose+hsine+n)[(coso+hsine+n)2 + 2 (cose+hsin9)2 ) de = 0,
(34)

EW5o g2 w ./2
PR 0 g _/ [(l+PP)(cose+h sine)+n] [(cose+h sine+n)2

"0 -1/2
+ P2 (coso+h sin) 2 )] COB c do , (35)

EW8
u g+ ir(w - 2) [(1+A 2 ) wr(wr+2) - 16J/t(l+P 2 ) w

2 - 8] (36)

2H2M
In Eqs. (26 - 36), h = - and n - -I -1. The distributions of theP PR

cross-sectional area A of these two arches are shown in Fig. 5 and 6

respectively. The comparison of the compliance of the optimum arch

with that of a corresponding uniform arch is shown in Figs. 7 and 8.

By comparison of our design with the design of an inextensible

beam, it is found that the variations of A in these two designs are

similar, particularly when the values of P is very small. When the

curved beam is very thin the design is primarily governed by the flex-

ure, except in the vicinities of M = 0 where the axial force dominates

and the value of A attains a local minimum. This phenomenon can be

visualized by examining the expressions of A, Eqs. (17), (26), and

(31). In these equations the first term in the bracket is due to flexure

11



and the second is due to extension. The first term is much larger than

the second when P is small and 8 is not close to the value where

M = 0. When P increases, the influence of the axial force becomes

more evident, the cross section becomes more uniform, and hence the

efficiency of the optimal design compared with the uniform beam

decreases.

4. OPTIMAL DESIGN OF CIRCULAR RINGS WITH AN UPPER
BOUND ON STRESSES

Unlike the case of an optimal straight beam, the magnitude of

extreme fiber stresses in an optimal ring with cross section as shown

by Eq. (17) is no longer uniform. Instead, it can be written as

0 z A

2PR {12w Ik-cosel[ (k-cosB)I.+cos2 ei -1Cos8 1/

(37)

In Fig. 9, a° is plotted against 8 for [ = 0. 05. It is found that

a reaches its maximum value at 6 = coso-' and coso-,

and minimum value at e = cos"1 k and v/2. The magnitude of these

extreme values increases rapidly as P decreases. Therefore, to

make the design more realistic it is necessary to set an upper bound

on the fiber stress.

Therefore the problem is to minimize the overall compliance

12



C = f eAdO (38)

under the condition of prescribed weight

W = cf AdO (39)

where a and c are given constants and e is the strain energy per

unit volume. In Eqs. (38) and (39) integrals are taken over the entire

beam. Since 0 is not greater than its upper bound a , we haveo C

ac -ao = 7 2(e) (40)

where , (8) is an unknown slack variable function. By introducing

the Lagrange multipliers X and X (0) we have the following vari-

ational equation for optimality,

6 Joe eAd -X 1 (c fAd6 - W)- fX 2 (e)[ac- to- 173(&)]del = 0.

(41)

The variations with respect to X1, )LX' 27' and A furnish Eqs. (39)

and (40),

X2 =1 0 (4Z)

as the Euler equations and

e -().e c)6AdO+ 8ASX2 (ac 00 - 7 2)dO = 0 (43)

In deriving Eq. (43), the dependence of e on A is disregarded because

of the principle of minimum potential energy. In view of Eqs. (40),

13
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(42), and (43), we conclude that when 7 = 0, we have

" =0 o(44)
c 0

and when 7p ý 0, )2 = 0 and Eq. (43) reduces to Eq. (7) as the

optimality condition. Therefore, for the optimal design of rings, if

the stress bound a is greater than the maximum value of c0 , i. e.,
c o

7c > (@or)rnax = 2*a/ PRpf/W a (a)u , (45)

then the stress constraint is ineffective and the optimality con-

ditions Eq. (9) governs the design of the entire ring. Hence, (ac) u

is an upper bound of ( below which the stress constraint will in-c

fluence the design. On the other hand, if a is sufficiently small, wec

have either the case that the given weight is not large enough for designing

a ring satisfying the stress constraint a c a in all sections or thec o

case that the stress constraint governs the entire design of the ring.

In the latter case, a7 = ac and0 C

A = P [ Ik-coseI + cose] (46)
2cr

From the condition of the given weight, we find that

-- j [. I -cos01 cos .(C) (47)

The equation for k can be obtained from Eq. (23) with a modification.

14



It in

Jt (k - cos ) k-coBol + coso 0 de = 0 (48)

When c = (a C) t, the design is entirely governed by the stress con-

traint. When a < (a)•c the given weight of the beam is not

sufficient to fulfill the condition of stress constraint. Finally, when

ac > (a c the stress constraint does not govern the design of the whole

ring and the optimality condition, Eq. (9), has to be taken into consider-

ation. Therefore, (a ) is a lower bound above which both Eqs. (9) and

(44) have to be used to determine the optimal design. In Fig. 10, the

dimensionless (a and (ac) are plotted against p. It is found thatc u c,

the values of (a ) and (a c) increase rapidly as • decreases.

In the following, we are interested only in the problem with a c

in the range (a( ) < o c () ( In this case, each of Eqs. (9) and
c t c c U

(44) governs the design in some intervals. In view of Fig. 10, it is

reasonable to assume that a = ac in two intervals 01 f 6 : 02 and

S3 0 r. 5 04 where 0 3 0 , and Eq. (9) holds in the remaining
1I*

intervals of 0 e. 8 ! . Accordingly, the design variable A will take

the form of Eq. (46) in the former intervals and the form of Eq. (14) in

the remaining intervals. The total weight of the cover sheets is thus

=4pR 1 + + -(k- cog O) + cos8 01/2 d8

15
' c-/ (k-o")'+C9



F -- _ _

+ (j''÷ 4P)
01 + D~L 1k- coo 1 + consO dO} (49)

+ a + F. c
3

Integrating Eqs. (12) and (13) and using the boundary conditions

Eq. (20) and the continuity conditions

w(e:) w W(0. (a + V(0-) = v(9.) and *(0?.)= +

i =1, 2, 3, 4 , (50)

we finally obtain the deflection at 0 =- as
2

W/2 04 1/

+ cos2 0] cos 0d8

R , "

+c 2 +J' )[-E (k-cos 0)- coo0][ Ik-cos"1E -+• ( q -p
1 3

+ coso o cos OdO, (51)

and

ci/a ( + ) , (k-Scoo 0) (k- coo 8?

0 0 01

2 + cost oJ dO

+ ( + 0 4) 7 (k-coo,) Ik-cosbl + coos] dO 0.

(52)

16
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The unknowns c and k -an be solved from Eqs. (49) and (52). How-

ever, 81, 0 , 6s, and 4 are still undetermined. If these values are2

prescribed, the constants c and k can be found from Eqs. (49) and

(52). Hence the design is determined by Eq. (46) in the intervals

91 6 0 . and 63 5 6-C 64, and by Eq. (14) in the remaining intervals

0 'e -2. The design of this type is optimal among all designs with

°= Tcr in the intervals 68 z '6 s9 8 and 63 s3 !K 6 r . Note that in

this design the value of A is not necessarily continuous at 8 = 81, 62,

83 64. For the optimal design, however, the values of 61 to 64 should

make the right-hand side of Eq. (51) a minimum with respect to all

admissible values. This criterion finally leads to a condition that A

must be continuous at 0 = 01, 631 03, and 64 [see Appendix]. Hence,

we have

PR °-"" 2 3 1/2 P I
P- C- (k1/2sI)k- cos)2+ COS- - I- IkcosOil + cos

i = 1, 2, 3, 4 (53)

Equations (49), (52), and (53) can be used to determine c, k, and

1.(i= 1, 2, 3, 4).1

A slightly modified Newton-Raphson iteration method is used

successfully in solving these equations. The broken line in Fig. 3

shows the value of A with the stress constraint c = 0.85 (a ) for

= 0.05. It is found that the deviation of A from the corresponding

17
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value in the design without the stress constraint is very small. How-

ever, the difference becomes much larger when a approaches the

value (a) 0.78 (a) The extreme fiber stress a in the optimal

beam is shown by the broken line in Fig. 9. It is seen that the consider-

able reduction of a in 81 S < 0 2 and e 63 0 - 64 does not lead

to a significant increase of a 0 in the remaining regions.

When P is sufficiently small, say less than 0.1, the distance

AO between two maxima of a in the design without stress constraint,

is approximately equal to 2P (Fig. 9). In the design with stress con-

straint, the interval between two regions governed by the stress constraint

is much smaller than A8 as shown by the broken line. Therefore, if

the value of P is very small, it is reasonable to approximate the design

by assuming that there is only one interval, say 61 < 0 g 64, governed

by the stress constraint.

As we have pointed out, the extreme fiber stress becomes infinity

at the point of zero moment in the optimal inextensible beam. Therefore,

to impose the stress bound constraint, one may assume that there is

only one continuous interval, in the neighborhood of zero moment, gov-

erned by the stress constraint. However, this assumption would lead

to a design somewhat equivalent to that of the one-interval-approximation

for the extensible beam discussed in the last paragraph. To obtain

more precise results, one has to assume that there are two separated

18



intervals governed by the stress constraint even for the inextensible

beam. This is due to the fact that the variation of the extreme fiber

stress or in the inextensible beam is similar to the solid curve in0

Fig. 9 for any nonzero value of A in the vicinity of zero moment.

5. CONCLUDING REMARKS

From the above investigation, we have the following conclusions:

(1) A more realistic optimal design can be achieved by con-

sidering the extensibility of the beam. When the thickness-

diameter ratio P of the beam is very small, the influence

of extensibility to the design is restricted to the vicinity of

minimum moment.

(2) The efficiency of optimal design defined by comparing its

compliance with that of a uniform beam with the same weight

depends on P. Smaller value of P leads to a higher

efficiency.

(3) The stress bound condition would influence the design only

if the value of allowable stress is within a certain range.

For large value of allowable stress, the design is entirely

governed by the optimality condition. For small value of

allowable stress, the prescribed weight of the beam is not

large enough to ensure the satisfaction of the stress bound

condition everywhere.

19



(4) From the stress distribution in the ring, designed without

the stress bound condition, we may find approximately the

regions where material must be added to satisfy the stress

bound condition. However, in the regions close to the

points of application of the load, material can be deducted

to fulfill the optimality condition.

(5) By imposing the condition of stress bound, the stress in

the regions of increased cross section can be reduced

considerably. However, the stress in the remaining

regions of the beam only increases slightly.

2O
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APPENDIX

A necessary condition that the deflection 8 given by Eq. (51) has

a minimum with respect to 6. (i = 1, 2, 3, 4) is1

B (6)c =+ !6o !k + - = 0 i= 1 2, 3, 4be. - b•. c,k + k BO. bc be.
1 1 1 (54)

where the subscripts c and k indicate the variable held constant
•k bc

in partial differentiations, and )k, ac can be found from differ-
1 1

entiating Eqs. (49) and (52) with respect to 6.. After substitution,
1

Eq. (54) yields

e [. (k- cos ei)2+cos +C i2 -9 [/ k - cos Oil + cos ei.]

X cos i ((k-cosOi)- cosiej ea 1+(01- 82- 8+8.) aI

+ ea 2 (a3 + eb,)]

+ (k- COS6i)2 + corn 6j 1,2 -Ik -coso.i + cose][-a(a

+ eb 1 ) + ka, a + ealb ]

- -(k-c.)F ekaa + e 2 a b + e a a

+-(0 8'e 03 + 0) a, 0 (55)S1 -*3]= (S

where the following notations are used

22



e Re /(ECIA/)
C

a + -1+ j ) (k-cos )[ - (k- cos 8)2  + Cos22e d ,

JO '9 '9 4 L JP

3 2 4

a~* ia 04 -/

a 0 j +8 +f )2 coo 2e (k-Cog)2+ Cosa ] dO
2 4

(56)
9G/2 , 1 1

a4  ( • + )[,, (k-cos.).- cos (k -,coo•.)'

+CosaO cosdO,

0++ ) Coso -[ co + dos082
bm 0 , 03 dO-

b. 20 -w(1- P)cosa k - co d

+I, +: P),oo. [Cos-9 +o.-co o.,] d9
3

and 02 < cos"1 k < 03 is assumed. The second brace of Eq. (55)

can be easily shown to be nonvanishing in the limiting

case ac - ('c) u In this case, , =82 = coo-1 I-k

08=04 =cos"1  k a = b1 = b3 = 0, a = (2)"/, and the second
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brace in Eq. (55) becomes

(() I kj~.A a a%57

where ia and a are the limiting values of a and a respect-
2 3 a a set

ively, which are obviously nonvanishing. Therefore if we set the

second brace in Eq. (55) zero, we shall not obtain the optimal design.

Otherwise, in the limiting case, the expression (57) would vanish.

Hence we conclude that the first brace in Eq. (55) must vanish and

A is continuous at e = 0. (i = 1, 2, 3, 4) for the optimal design.
2
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V t V+dV

F F+dF

F: Axial tension

M: Bending moment

V: Transverse shear

Fig. 1. Forces and moments on an
infinitesimal arc of the beam.

25



irL

I 

lx

Xa

A.b

00

T 

06

264



0-0 0

S~

,r Z

U

-- 0

000 0

10

00

27
0 o



_I.

d 0

(bb

0

0

0

0

28•

'4

280



0

CQý. Ca. ca

0

34

0

d

C34

-2i

0

00

29D

N # --

, , ,, ,o
•l • oo

• ' .



40

-0

0i C
U

f-0

300

U.

_0 U,d

-0.

tJ o

S... , 4, "



0 0-

u0u

02

U

0/ -,

0
.4.4

;4-

0

00

0 0

31

! -'



-7117 
IV,

010

u4)

0

u

0
44

t:eodlooz E

o

4L

u
Cb 

cd

E

0

0

$4

cd
la.

E0
u

I I
0 0 00
C*j -

32



~0

co

\ E
C5 44

• "to

cmm

-0 U,

I' I

1. E

*

-0-

_ 0 0ý

100
400

"I- 33

I I II1

_o o ® • ,,.,• ,
•O. 33



0R CR 0U

b

'I3



UNC LASS IFIEDI
Shcut CesmaacaionDOCUMENT CONTROL DATA.- R & D

'SeeCwity classification oftitle.. body' of Absitlact and indexing Annotation mu,rt be entered when the overall rep..rt is. classified)
IORIGINATINGS ACTIVITY (COtPINeIfila.tho?) U2a. REPORT SEC PITY CLASSIFIATION

University of California, San Diego UNCLASSIFIED
Dept. of the Aerospace & Mech. Eng. Sciences 2b. GROUP

LA Jolla, California 92037
3 REPORT TITLE

OPTIMAL DESIGN OF ELASTIC CIRCULAR SANDWICH BEAMS FOR
MINIMUM COMPLIANCE

A. DESCRIPTIVE NtOTES (flp.P of epoor and JnCl.,.i"' date*)

1Scientific 

Interim

N. C. Huang and C. Y. Sheu

.6 REPORT DATE 70. TOTAL NO. OF PAGES 71. NO. or REFS

August 1969 34 1

a.CONTRACT om GRANT NtO 54. ORIOINATOR'S REPORT NUMISERIS)

b. PROJECT No, AF8-AF0 R1166 Technical Report No. 15

6144501 F Sb. OTHER REPORT NtO(S) (Any *#h., nasibets1that way be assigned
this report)

d. 681307 AFOSR-69-2136TR
10. OISTRIDUUIONt STATEMENIT

1. This document has been approved for public release and sale;
its distribution is unlimited.

11 SUPPLEMENTARY NOTES 112. SPONSORINGO MILITARY ACTIVITYIAF Office of Scientific Research (SREM)I1400 Wilson Boulevard
_______________________________jArlington. Virginia 22209

III ABSTRACT

-Elastic circular sandwich beams are designed for minimum

compliance and given total weight. To treat the problem in a more

realistic manner, the beams are regarded as extensible. Examples

are given for the optimal design of circular rings and semicircular

arches with different end conditions. The calculated optimal com-

pliance is compared with the corresponding compliance of a uniform

beam with identical weight. Finally, the optimal design with stress

bounds is also investigated for the ring problem.

0DD, ~'1473 UNCLASSIFIED
~*lII'I'. (1 . 0i II. n1 1



UNCLASSIFIED
UsecwUMV Clssificstiofi-

LINK A LINK 0 LINK C

K OmaROLE WT ROLE WT ROLE WT

Optimal Elastic Design

Minimum Compliance

Stress Constraint

Circular Rings

Semicircular Arches

UNCLASSIFIED



DOCUMENT CONTROL DATA •R kD,, .

S *.Secur' g Prlonu f glens gIUIIl.'bod, of a Ibs .I. a,, ndlsg * , '. f e' d " I t -r-- tied)

C 7, , . . TI , ,.ipaae a.rhar) is. RT,-O, - 6f C Iu a I

, . University of California, San Diego UNCLASSIFIED ' " ""
-fDept. of the Aerospace & Mech. Eng. Sciences 1, 01OU0

La Jolla, California 92037

OPTIMAL DESIGN OF ELASTIC CIRCULAR SANDWICH BEAMS FOR
2' MINIMUM COMPLIANCE

Scientific Interim

~~~ s 
iAu 1"00 

.Sb (Ft 
lststenstie. -I 

ddle Initta 
l/. last n iimle)

"N. C. Huang and C. Y. Sheu

S REPOT 70. T. OTAL P40 OW PAGES It. No Oý QEýS

A ugust 1969 34 4
So- O."OTRAC' ON GR0ANT NO to. OqIGIiATO*S REPORT NUMPVRiS1

AF-AFOSR-1226-67 Technical Report No. 15
I. POjECT NO 9782-01

6144501 F 9P. 0-YER REPORT NOIS) (Any other nwb,. tha. t., r-.,.be as.a ,ed
this report)

d. 681307 AFOSR-69-2136TR
10 OfSTRIgBUTON STATEMENT

I. This document has been approved for public release and sale;
- its distribution is unlimited.

11 SUPPICUFVTAQV NOTES 12 SPONSORING •J•L•TA CV ACT

AF Office of Scientific Research (S.RrAQ
0'4er "--, •1400 Wilson Boulevard17TF _Arlington. Virginia A. 209

Elastic circular sandwich beams are designed for minimum

compliance and given total weight. To treat the problem in a more

realistic manner, the beams are regarded as extensible. Examples

are given for the optimal design of circular rings and semicircular

arches with different end conditions. The calculated optimal com-

pliance is compared with the corresponding compliance of a uniform

beam with identical weight. Finally, the optimal design with stress

bounds is also investigated for the ring problem.

DD !0.1473 UNCLASSIFIED

_ _ _ _ _ - . . .


